目的 将高效液相色谱(HPLC)指纹图谱、抗氧化活性研究与化学计量学分析相结合,对15批蓬莪术多糖进行质量评价。方法 以葡萄糖为对照品,采用苯酚-硫酸法测定总糖含量;以三氟乙酸水解蓬莪术多糖,采用1-苯基-3-甲基-5-吡唑啉酮柱前衍生化-高效液相色谱法(PMP-HPLC)建立蓬莪术多糖的指纹图谱,评价指纹图谱相似度、层次聚类分析和偏最小二乘法-判别分析;使用1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除能力、羟自由基清除能力和Fe3+总还原能力为指标测定抗氧化活性,评价蓬莪术多糖的抗氧化活性。结果 蓬莪术多糖指纹图谱鉴别了6个共有峰,分别为甘露糖、鼠李糖、半乳糖醛酸、葡萄糖、半乳糖和阿拉伯糖。基于相似度评价和聚类分析、偏最小二乘法-判别分析,选择甘露糖、葡萄糖和半乳糖醛酸作为潜在的化学标记物,DPPH自由基清除能力对应的抗氧化活性可作为辅助鉴别的候选检测指标。结论 建立蓬莪术多糖PMP-HPLC指纹图谱,结合抗氧化活性可为蓬莪术多糖质量控制提供更全面的参考。
Abstract
OBJECTIVE To evaluate the quality of 15 batches of Curcuma phaeocaulis polysaccharide (CPP) from different areas by the combination of HPLC fingerprint, antioxidant activity and stoichiometric analysis. METHODS With glucose as the control substance, the content of total sugar was determined by phenol-sulfuric acid method, CPP was hydrolyzed by trifluoroacetic acid, and the fingerprint of polysaccharide was established by PMP-HPLC, and the similarity of fingerprint, hierarchical cluster analysis and partial least square-discriminant analysis were evaluated. The antioxidant activity of CPP was evaluated by using the DPPH free radical scavenging ability, hydroxyl radical scavenging ability and total Fe3+ reducing ability as indexes. RESULTS Six common peaks were identified by the fingerprint of CPP, which were mannose, rhamnose, galacturonic acid, glucose, galactose and arabinose. Based on similarity evaluation, cluster analysis and partial least square-discriminant analysis, mannose, glucose and galacturonic acid were selected as potential chemical markers, and the antioxidant activity corresponding to DPPH free radical scavenging activity could be used as candidate detection indexes for auxiliary identification. CONCLUSION The establishment of PMP-HPLC fingerprint of CPP combined with antioxidant activity can provide a more comprehensive reference for the quality control of Rhizoma Curcumae polysaccharide.
关键词
蓬莪术多糖 /
PMP-HPLC指纹图谱 /
抗氧化活性 /
化学统计学
{{custom_keyword}} /
Key words
Curcuma phaeocaulis polysaccharide /
PMP-HPLC fingerprint /
antioxidant activity /
chemical statistics
{{custom_keyword}} /
中图分类号:
R282
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ch.P (2020) Vol Ⅰ (中国药典2020年版. 一部)[S]. 2020:286-287.
[2] YU C H, PENG C, YU C C. Research progress of authentic traditional Chinese medicine Curcuma Zedoaria in Sichuan[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2008, 19(2): 388-389.
[3] HOU Y, LU C L, ZENG Q H, et al. Anti-inflammatory, antioxidant and antitumor activities of ingredients of Curcuma phaeocaulis Val[J]. Excli J, 2015, 14: 706-713.
[4] CUI H R, ZHANG B B, LI G P, et al. Identification of a quality marker of vinegar-processed curcuma zedoaria on oxidative liver injury[J]. Molecules, 2019, 24(11): 2073.
[5] MA J H, WANG Y, LIU Y, et al. Four new sesquiterpenes from the rhizomes of Curcuma phaeocaulis and their iNOS inhibitory activities[J]. J Asian Nat Prod Res, 2015, 17(5): 532-540.
[6] FENG Y W, DENG L, GUO H R, et al. The anti-colon cancer effects of essential oil of Curcuma phaeocaulis through tumour vessel normalisation[J]. Front Oncol, 2021, 11: 728464.
[7] GOU X M, WANG Q, GAO G, et al. Antioxidant activities of polysaccharides from rhizomes of the herbCurcuma phaeocaulis in vitro[J]. Sci Technol Food Ind (食品工业科技), 2015, 36(6): 122-125,130.
[8] CAI J X, HUANG L Y, YAN Q W, et al. Optimization of microwave-assisted extraction process and antioxidant activity of Curcuma kwangsiensis oil[J]. China Food Addit (中国食品添加剂), 2022, 33(4): 136-143.
[9] WANG Z J, XIE J H, NIE S P, et al. Review on cell models to evaluate the potential antioxidant activity of polysaccharides[J]. Food Funct, 2017, 8(3): 915-926.
[10] YU M Q, XU G, QIN M, et al. Multiple fingerprints and spectrum-effect relationship of polysaccharides from Saposhnikoviae Radix[J]. Molecules, 2022, 27(16): 5278.
[11] ZHANG A L, SHEN Y W, CEN M, et al. Polysaccharide and crocin contents, and antioxidant activity of saffron from different origins[J]. Ind Crops Prod, 2019, 133: 111-117.
[12] ZHU J J, WU C T, ZHOU Y L, et al. Analysis of spectrum-efficacy relationship between fingerprint and antioxidant activity of polysaccharide in Atractylodes Macrocephala[J]. Phys Test Chem Anal Part B Chem Anal (理化检验化学分册), 2022, 58(6): 701-707.
[13] ZHOU Z Y, DU Z F, PU T T, et al. Construction of PMP-HPLC fingerprint of partial acid hydrolysate of Polygonatum cyrtonema polysaccharides based on the chemometric methods[J]. Sci Technol Food Ind (食品工业科技), 2022, 43(13): 284-290.
[14] CHEN F, HUANG G L, YANG Z Y, et al. Antioxidant activity of momordica charantia polysaccharide and its derivatives[J]. Int J Biol Macromol, 2019, 138: 673-680.
[15] SHI L, JIAO Y, ZHOU G T, et al. Quality study of Urocteacompactilis based on fingerprint combined with chemometrics and multi-component content determination[J]. Chin Pharm J (中国药学杂志), 2022, 57(22): 1935-1941.
[16] ZHANG T, JIAO L Q, LIU R R, et al. Study on the spectral effect relationship of antioxidant activity of polyphenols from ilex kudingcha[J]. Chin Pharm J (中国药学杂志), 2023, 58(6):489-496.
[17] CHEN H L, JU Y, LI J J, et al. Antioxidant activities of polysaccharides from Lentinus edodes and their significance for disease prevention[J]. Int J Biol Macromol, 2012, 50(1): 214-218.
[18] TIFFANY C-T L, CHENG A C, KONG-HWA C, et al. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods[J]. Carbohydr Polym, 2011, 86(1): 320-327.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划项目资助(2019YFC1711500);中国食品药品检定研究院中青年发展研究基金课题资助(2022A5-1020052210205)
{{custom_fund}}